
Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 57 | P a g e

Implementation Of Syntax Parser For English Language Using

Grammar Rules

Shraddha Anantpure
1
, Hinal Jain

2
, Neha Alhat

3
, Smita Bhor

4
, Mrs Shanthi

Guru
5

1,2,3,4(Computer Engineering, DYPCOE, Akurdi/ University of Pune, India)

5(Assistant Prof, Computer Engineering, DYPCOE, Akurdi/University of Pune, India)

Abstract
From many years we have been using Chomsky‟s generative system of grammars, particularly context-free

grammars (CFGs) and regular expressions (REs), to express the syntax of programming languages and

protocols. Syntactic parsing mainly works with syntactic structure of a sentence. The 'syntax' refers to the

grammatical and syntactical arrangement of words in a sentence and their relationship with other words. The

main focus of syntactic analysis is important to find syntactic structure of a sentence which usually is

represented as a tree structure. To identify the syntactic structure is useful in determining the meaning of a

sentence Natural language processing processes the data through lexical analysis, Syntax analysis, Semantic

analysis, and Discourse processing, Pragmatic analysis. This paper gives various parsing methods. The

algorithm in this paper splits the English sentences into parts using POS (Parts Of Speech) tagger, It identifies

the type of sentence (Simple, Complex, Interrogate, Facts, active, passive etc.) and then parses these sentences

using grammar rules of Natural language. As natural language processing becomes an increasingly relevant,

there is a need for tree banks catered to the specific needs of more individualized systems. Here, we present the

open source technique to check and correct the grammar. The methodology will give appropriate grammatical

suggestions.

I. INTRODUCTION

Most language syntax theory and practice is based on generative systems, such as regular expressions and

context-free grammars, in which a language is defined formally by a set of rules applied recursively to generate

strings of the language. Language is the important tool of communication used by the individuals. It is the tool

that everyone uses to express the greater part of ideas and emotions. It shapes thought, has a structure, and

carries meaning. Natural language processing is concerned with the progress of computational models of human

language processing. Natural language processing, a branch of artificial intelligence that deals with the analysis

and interpretation of human languages, has become increasingly relevant as people begin to rely more and more

on computers for aid in communication and information compilation.

Most recent work in learning for semantic parsing has focused on “shallow” analysis such as semantic role

labeling (Gildea and Jurafsky, 2002). In this paper, we address the more ambitious task of learning to map

sentences to a complete formal meaning representation language (MRL). We consider two MRL‟s that can be

directly used to perform useful, complex tasks. The first is a Prolog-based language used in a previously-

developed corpus of queries to a database on U.S. geography (Zelle and Mooney, 1996). By integrating

syntactic and semantic interpretation into a single statistical model and finding the globally most likely parse, an

accurate combined syntactic/semantic analysis can be obtained.

Identifying the syntactic structure is useful in determining the meaning of the sentence. The identification is

done using a procedure known as parsing. Syntactic parsing deals with the syntactic structure of a sentence. In

many languages, words are brought together to form larger groups termed constituents or phrases, which can be

modeled using context free grammar. Context free grammar is a set of rules or productions that expresses which

elements can occur in a phrase and in what order.

Chomsky‟s generative system of grammars, from which the ubiquitous context-free grammars (CFGs) and

regular expressions (REs) arise, was originally designed as a formal tool for modeling and analyzing natural

(human) languages. Due to their elegance and expressive power, computer scientists adopted generative

grammars for describing machine-oriented languages as well. The ability of a CFG to express ambiguous syntax

is an important and powerful tool for natural languages. Unfortunately, this power gets in the way when we use

CFGs for machine-oriented languages that are intended to be precise and unambiguous. Ambiguity in CFGs is

difficult to avoid even when we want to, and it makes general CFG parsing an inherently super-linear-time

RESEARCH ARTICLE OPEN ACCESS

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 58 | P a g e

problem. The detailed procedure is prescribed in various sections as follows. Section-2 provides the overview of

CFG also known as phrase structure grammar as methodology of the algorithm.Section-3 represents various

parsing approaches and procedures to solve this issue. Section-4 describes proposed method for checking syntax

of the given sentences. Section-5 describes the experimental outcomes for the same and paper ends with

conclusion and future work.

II. LITERATURE SURVEY

A Context-Free Grammar (CFG) is a mathematical system for modeling constituent structure" in natural

languages, consisting of rules for the syntax of the grammar, as well as a lexicon of syntax and associated

words. More formally, each rule in a CFG begins with a single start symbol, such as a type of phrase, followed

by the constituents of that symbol. The constituents may be either a terminal symbol associated with a word in

the lexicon (example Verb), or a non-terminal symbol, associated with a symbol defined by its own set of

constituents (e.g. Noun Phrase).

Context-free grammar (CFG) was first defined for natural language by Chomsky (1957) and used for the

Algol programming language by [9]. A CFG consists of four components:

1. A set of non-terminal symbols, N

2. A set of terminal symbols, T

3. A designated start symbol, S, that is one of the symbols from N.

4. A set of productions, P, of the form:A --› a

TABLE1. LIST OF ABBREVIATIONS FOR THE GRAMMAR

Abbreviations Abbreviations

Meaning

S Sentence

Det Determiner

Adj Adjective

Pron Pronoun

Num Numerals

Conj Conjunction

Neg Negation

Prep Preposition

Adv Adverb

V Verb

N Noun

NP Noun Phrase

VP Verb Phrase

NPP Noun Preposition

Phrase

VPP Verb Preposition

Phrase

III. PARSING APPROACHES

A Context Free Grammar (CFG) defines the syntax of a language but CFG does not specify how structures

are assigned. Parsing is the task that uses the rewrite rules of a grammar to either generate a particular sequence

of words or reconstruct its derivation or phrase structure tree. Phrase is a phrase structure tree which is

constructed from a sentence. There are three parsing approaches: 1) Top-Down Parsing and 2) Bottom-Up

Parsing 3) Shift-Reduce Parsing.

A. Top-down parsing
Top down parsing starts the searching from the root node say S and works downwards towards the leaves

that is the input can be derived from the chosen start symbol S, of the grammar. The next step is to find all sub-

trees which can start with start symbol S. To generate the sub trees of the second -level search, we expand and

root node using all the grammar rules associated with S on their left hand side. In a same way, each non-

terminal symbol in the resulting sub-trees is expanded next using the grammar rules having a matching non-

terminal symbol on their left hand side. The right hand side of grammar rules provides the node that is to be

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 59 | P a g e

generated, which are then expanded recursively. As the expansion continues, the tree grows downward and

eventually reaches a state where the bottom of the tree consists only of part-of speech categories. At that point,

all trees whose leaves do not match with the words in the input sentence are rejected, leaving only trees that

represent successful parses.

Figure1. Top-Down Search Space

B. Bottom-up parsing
A bottom-up parser starts with the words in the input sentence and attempts the construction of parse tree in

an upward direction towards the root node say S. In each step, the parser looks for the rules in the grammar where

the right hand side matches some of the production in the parse tree constructed so far, and reduces it using the

left hand side of the production. If the parser reduces the tree to the start symbol S of the grammar then the parse

is considered successful. Each of these parsing approaches has its own advantages and disadvantages. The top-

down search starts generating the trees with the start symbol S. The grammar never wastes time exploring a tree

leading to a different root. However, it wastes the considerable time in exploring S trees that eventually result in

words that are inconsistent with the input. This is because a top down parser generates trees before seeing the

input. On the other hand, a bottom-up parser never explores the tree that does not match with the input but it

wastes the time in generating trees that have no chance of leading to an S-rooted tree. There are many attempts

have been made to develop a syntax parsing with various approaches. Majority of approaches to check syntax

correctness is based on probabilistic approach.

C. Shift-Reduce Parsing
In order to build a parser, we need to create an algorithm that can perform the steps in the above rightmost

derivation for any grammar and for any input string. Every CFG turns out to have an automaton that is

equivalent to it, called a pushdown automaton (just like regular expressions can be converted to finite state

automata). A pushdown automaton is simply a finite-state automaton with some additional memory in the form

of a stack (or pushdown). This is a limited amount of memory since only the top of the stack is used by the

machine. This provides an algorithm for parsing that is general for any given CFG and input string. The

algorithm is called shift-reduce parsing which uses two data-structures: a buffer for input symbols and a stack

for storing CFG symbols and is defined as follows:

1. Start with an empty stack and the buffer contains the input string.

2. Exit with success if the top of the stack contains the start symbol of the grammar and if the buffer is empty.

3. Choose between the following two steps (if the choice is ambiguous, choose one based on an oracle):

Shift a symbol from the buffer onto the stack. If the top k symbols of the stack are _1 : : : _k which corresponds

to the right-hand side of a CFG rule A ! _1 : : : _k then replace the top k symbols with the left-hand side non-

terminal A.

4. Exit with failure if no action can be taken in previous step.

5. Else, go to Step 2.

IV. ALGORITHM

4.1 Rule Based Algorithm
The WORKING of syntax analyzer is done through following rule based algorithm.

1. Enter a sentence.

2. Categorize the sentence using Table-2.

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 60 | P a g e

3. Check the phrases of sentences using various tags that are returned by POS tagger. (Its noun phrases (N,

NP, NPP) and verb phrases (V, VP, VPP)).

4. Partition the sentence into NP and VP identified in Table-4.

5. Parse the NP, NPP, V and VPP by matching it against the Grammar rules.

6. If all parts of the sentences are parsed correctly then sentence is syntactically correct, else the sentence is

syntactically incorrect.

TABLE2. CATEGORIZATION OF ENGLISH SENTENCES

Basis of categorization Category

Sentence with only one

subject, one verb and one

object.

Simple

Sentence with only one

subject, verb, and

adjective followed by a

verb.

SVO with adjective

Sentences with more

than one subject or

object and having

“and”…”or” in it.

Complex

Sentence terminating

with a“?”

Interrogative

Sentences containing

conjunctions.

Conjunctions

Sentences starting with

This, That.

Facts

Simple Sentences. Active

Sentences in which the

subject follows “by”.

Passive

4.2 POS TAGGER
A Part-of-Speech Tagger (POS Tagger) is a part of software that reads the text in some language and

allocates the parts of speech (i.e. tags) to each word. It assigns a part-of-speech like noun, verb, pronoun,

preposition, adverb, and adjective or other lexical class marker to each word in a sentence. This software is a

Java implementation of the log-linear part-of-speech taggers. There are number of Taggers like Stanford Tagger,

Apache UIMA Tagger; Eric Brill‟s simple Rule Based Tagger etc. Out of which Stanford tagger has been used.

Its basic download contains two trained tagger models for the English. The full download contains three trained

English tagger models that are an Arabic tagger model, a Chinese tagger model, and a German tagger model.

Both the versions include the same source and the other required files. The tagger can be retrained on any

language, given POS-annotated training text for the language. The input to a tagging algorithm is a string of

words of a natural language sentence and a quantified tag set (a finite list of Part-of-speech tags). The output is a

single finest parts-of-speech tag for each term as shown in table-3.

TABLE3. POS TAGGED OUTPUT AND THEIR MEANINGS.
Tagg

er

outp

ut

Meani

ng

Ta

gge

r

out

put

Mea

ning

Tagg

er

outpu

t

Meani

ng

CD Cardin

al

Numb

NN

PS

Prop

er

Noun

TO to

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 61 | P a g e

er ,

Plura

l

CC Coordi

nating

Conju

nction

e.g.

and,

but,

or..etc.

NN

S

Noun

,

plura

l

VBN Past

particip

le

DT Deter

miner

PD

T

Prede

termi

ner

e.g.

all,

both..

when

they

prece

de an

articl

e

UH Interjec

tion

e.g. uh,

well,

yes,

my..

EX Existe

ntial

There

PO

S

Posse

ssive

Endi

ng

e.g.

Noun

s

endin

g in

„s

VB Verb,

base

form

subsum

es

imperat

ives,

infiniti

ves and

subjunc

tives

FW Foreig

n

Word

PR

P

Perso

nal

Pron

oun

e.g. I,

me,

you,

he..

VBD Verb,

past

tense

include

s the

conditi

onal

form of

the

verb to

be

IN Prepos

ition

or

subord

inating

conjun

ction

PR

P $

Posse

ssive

Pron

oun

e.g.

my,

your,

mine,

yours

VBG Verb,

gerund

or

present

particip

le

JJ

Adject

ive

RB

Adve

rb

VBP

Verb,

non-3
rd

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 62 | P a g e

Most

word

s that

end

in -ly

as

well

as

degre

e

word

s like

quite,

too

and

very

person

singula

r

present

JJR Adject

ive,

compa

rative

RB

R

Adve

rb,

comp

arativ

e,

adver

bs

VBZ Verb,

3
rd

pers

on

singula

r

present

JJS Adject

ive,

superl

ative

RB

S

Adve

rb,

Supe

rlativ

e

WDT Wh-

determi

ner e.g.

which,

what,

who

MD Modal

e.g.

can,

could,

might,

may

SY

M

Sym

bol

used

for

math

emati

cal,

scien

tific

symb

ols

WPS Possess

ive

Wh-

pronou

n

NN Noun

singul

ar or

mass

WR

B

Wh -

adver

b e.g.

how,

wher

e,

why

NNP Proper

Noun,

singula

r

LS List

Item

Marke

r

RP Parti

cle

WPS Possess

ive wh-

pronou

n

4.3 Categorization Based On Kind Sentence And Grammar Rules
According to Wren and Martin the sentence is comprises of Subject, Verb and Object. So that, each

sentence has a subject(S), Object (O) and a Verb (V). Some sentences may also have adjectives, adverbs and

conjunctions. There are also sentences which are interrogative i.e. the sentences that ask a question. Keeping all

these in mind, sentences are categorized into different type. It is important to categorize sentences as the POS

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 63 | P a g e

tagger treats the sentences as group of words. It does not look at the meaning of the sentence as a whole. The

basic process of categorization is shown in table2. The categorization is as follows:

1. Sentences having exactly one subject, one verb and one object. (Simple)

2. Sentences having exactly one subject, one verb, one object and adjectives also. (Simple with

ADJECTIVES).

3. Sentences containing more than one noun and verbs. (COMPLEX)

4. Sentences contains question. (INTERROGATIVE)

5. Sentences containing conjunctions. (CONJUCTIONS)

6. Simple fact statements. (FACTS)

7. Sentences in active form. (ACTIVE)

8. Sentences in passive form. (PASSIVE)
The categorization has been made to check for the accuracy of the system with respect to the types of

sentences. After categorizing the sentences the format of sentences using POS tagger is checked. POS tagger

identifies the noun phrases (N, NP, NPP) and verb phrases (V, VP, VPP) using the tags mentioned in the Table-

3. Then partition the sentences into different phrases like NP and VP defined in Table-4. Then it parses the NP,

NPP, V and VPP by matching it with the Grammar rules. Grammar rules (from Table-4) have been implemented

for English language sentences and are identified that they are working for different types of sentences like

Simple, complex, active, passive etc. using table-2. The grammar rules to be checked for the syntax analyzer are

as shown in table4.

TABLE4. CATEGORIZATION OF ENGLISH SENTENCES

Sr.

No.

Phrases Phrases and Rules

1. S i. S = NP VP

ii. S = NPP VP

iii. S = VP

iv. S = NP NPP VP

v. S = NPP NPP NP VP

2. NP i.NP = N

ii. NP = Det Adj N

iii. NP = Det N

iv. NP = Pron

v. NP = Pron N

vi. NP = Num N

vii. NP = Num N N

viii. NP = N Conj N

ix. NP = Num N N Conj N

x. NP = Det N N

xi. NP = Det Adj Adj N

xii. NP = Pron N N

xiii. NP = Adj Pron N

xiv. NP = Det Adj N N

xv. NP = Det Adj N Pron

xvi. NP = Neg N

xvii. NP = Pron Adj N

3. NPP NPP = Prep NP

4. AP i. AP = Adj

ii. AP = Adj Adj

iii. AP = Adj Conj Adj

5. APP APP = Prep AP

6. V i.V = V

ii. V = V V

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 64 | P a g e

iii. V = V Adv V

iv. V = V Neg V

v. V = V V V V

vi. V = V Conj V

vii. V = V Adv

viii. V = V Neg V Adv

ix. V = Adv Conj Adv

x. V = Adv V Neg V

xi. V = V Adv Conj Adv

xii. V = Adv V

xiii. V = V V Adv

7. VPP VPP = Prep V

8. VP i.VP = V NP

ii. VP = V VPP NP

iii. VP = V NPP NP

iv. VP = V NP NPP

v. VP = V AP

vi. VP = V NP NP VPP

vii. VP = V

viii. VP = V NPP

ix. VP = V VPP

x. VP = V NP V

xi. VP = V NP VPP NP

xii. VP = V VPP NPP

xiii. VP = V NP NPP V NP

xiv. VP = V NP AP

xv. VP = V NP AP VPP

xvi. VP = V NPP NPP

xvii. VP = V NP V NPP

xviii. VP = V VPP NP NP

xix. VP = V NP NPP NPP

xx. VP = V NPP NPP NPP

xxi. VP = V VPP AP NPP

NPP

xxii. VP = V VPP NP NPP

xxiii. VP = V AP NPP

NPP

xxiv. VP = V NP AP NPP

xxv. VP = V NPP AP

xxvi. VP = V VPP NP AP

xxvii. VP = V AP NPP

xxviii. VP = V NP VPP NP

NPP

xxix. VP = V NP NPP

xxx. VP = V NPP VPP NP

xxxi. VP = V NPP AP NPP

The analysis of words into the sentence is to know the grammatical structure of the sentence. The words are

converted into the constructions that show how the words relate to each other. Some of the sentences may be

prohibited if they disrupt the rules of the language for how words may be combined.

V. RESULTS

Experimentation of different samples is chosen such as a word, a sentence, a paragraph and is also chosen

for different categories of sentences such as simple, complex, active, passive voice, questions etc. The algorithm

of Stanford POS tagger does the tokenization of input query. After the stop word removal, spelling checking of

each word is been done. Followed by sentence categorization based on pre-defined rules. We studied the

suggestions for a given sentence and correction. We have also studied the keyword extraction by using page

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 65 | P a g e

rank algorithm based on occurrences and priority of the keywords. The sample sentences and their

corresponding syntactic understanding whether they are syntactically correct or not shown in the table5.

TABLE5. RESULTS OF SYNTAX ANALYSER

Type of

sentence

Sample

Sentences

Output

Simple 1. The angry girl

kicked the ball.

2. She went to

school.

3. I want to know

your name.

4. They lived in a

huge palace.

Sentence is

syntactically

correct.

Simple +

ADJ

1. Rahul is a

clever boy.

2. He likes tasty

pizza.

3. I love fresh

flowers.

4. Jack likes to

visit lovely

places.

Sentence is

syntactically

correct.

Complex

1. They were

having a good

time.

2. They were

playing in the

ground

3. They were

studying in the

good college.

4. He was selling

fruits in front of

the hall.

Sentence is

syntactically

correct.

Questions 1. Who are you?

2. What is your

name?

3. When is your

birthday?

4. What is the

name of your

village?

Sentence is

syntactically

correct.

Conjunctions 1. He was put

behind the bars

for his crime.

2. The cat was

sitting under the

chair.

3. The children

performed

fabulously in the

concert.

4. They went to

the park and

played football.

Sentence is

syntactically

correct.

Shraddha Anantpure et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 5, Issue 1(Part 3), January 2015, pp.57-66

 www.ijera.com 66 | P a g e

Facts 1. Hellen Keller

was blind.

2. Sun rises in the

east.

3. The earth is

round.

Sentence is

syntactically

correct.

Active

sentences

1. The girl was

washing the car.

2. Sita writes a

letter.

3. Rita wrote a

letter.

4. Rahul has

written a letter.

Sentence is

syntactically

correct.

Passive

sentences

1. The car was

being washed by

the girl.

2. A letter is

written by Sita.

3. A letter has

been written by

Teena.

Sentence is

syntactically

correct.

Incorrect

sentences

1. Sita a letter.

2. Rita wrote a.

3. The girl

washing the car.

4. Boy the go the

to store

Sentence is

syntactically

incorrect.

VI. CONCLUSION AND FUTURE WORK

We studied the syntax analysis, syntax Representation for English Language, POS tagging technique,

Sentence categorization and an approach to check syntactic correctness of the sentence. On the basis of

suggestions popped selection of the correct suggestion. We also studied keyword searching and extraction of its

meaning using page rank algorithm. By increasing the domain into universal the accuracy can be increased

gradually.

REFERENCES

[1] Syntax Parsing: Implementation using Grammar-Rules for English Language - 2014 International

Conference on Electronic Systems, Signal Processing and Computing Technologies.

[2] STANFORD POS TAGGER: nlp.stanford.edu/software/tagger.shtml I.S. Jacobs and C.P. Bean, “Fine

particles, thin films and exchange anisotropy,” in Magnetism, vol. III, G.T. Rado and H. Suhl, Eds.

New York: Academic, 1963, pp. 271-350.

[3] Bharti Akshar and Rajeev Sangal, “A Karaka-based approach to parsing of Indian languages”,

Proceedings of the 13th Conference on Computational Linguistics, Association for Computational

Linguistics.R. Nicole, “Title of paper with only first word capitalized,” J. Name Stand. Abbrev., in

press.

[4] Wren and martin, English grammar and composition. S. Chand & Company LTD.

[5] Jurafsky, Daniel and James H. Martin, “Speech and Language Processing:An Introduction to Natural

Language Processing” Computational Linguistics, and Speech Recognition, Prentice Hall, NJ, , 2000.

[6] Claire M. Nelson, Rebecca E. Punch, John Donaldson, “An Interactive Software Tool for Parsing

English Sentences”, Proceedings of the Midstates Conference on Undergraduate Research in Computer

Science and Mathematics, 2011.

[7] Bharti Akshar, Vineet Chaitanya, and Rajeev Sangal, Natural Language Processing: A Paninian

Perspectiue, Prentice-Hall of India, 1995.

[8] Charniak, Eugene, Statistical Language Learning, MIT press, Cambridge, 1993.

[9] Charniak, Naur, Peter,J.w. Backus , F.L. Bauer,J. Green , C.Katz,J. McCarthy, A.Perlis, H.

Rutishauser, K. Samelson, B. vauquois, J. H. wegstein, A.van Wijngaarden, and M. Woodger, 'Report

on the algorithmic language ALGOL 60,' communications of the ACM, 3(5) pp. 299-314,1960.

http://nlp.stanford.edu/software/tagger.shtml

